Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mutagenesis ; 39(2): 146-155, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38183270

RESUMO

The two-test in vitro battery for genotoxicity testing (Ames and micronucleus) has in the majority of cases replaced the three-test battery (as two-test plus mammalian cell gene mutation assay) for the routine testing of chemicals, pharmaceuticals, cosmetics, and agrochemical metabolites originating from food and feed as well as from water treatment. The guidance for testing agrochemical groundwater metabolites, however, still relies on the three-test battery. Data collated in this study from 18 plant protection and related materials highlights the disparity between the often negative Ames and in vitro chromosome aberration data and frequently positive in vitro mammalian cell gene mutation assays. Sixteen of the 18 collated materials with complete datasets were Ames negative, and overall had negative outcomes in in vitro chromosome damage tests (weight of evidence from multiple tests). Mammalian cell gene mutation assays (HPRT and/or mouse lymphoma assay (MLA)) were positive in at least one test for every material with this data. Where both MLA and HPRT tests were performed on the same material, the HPRT seemed to give fewer positive responses. In vivo follow-up tests included combinations of comet assays, unscheduled DNA synthesis, and transgenic rodent gene mutation assays, all gave negative outcomes. The inclusion of mammalian cell gene mutation assays in a three-test battery for groundwater metabolites is therefore not justified and leads to unnecessary in vivo follow-up testing.


Assuntos
Hipoxantina Fosforribosiltransferase , Linfoma , Camundongos , Animais , Testes de Mutagenicidade , Ensaio Cometa , Roedores , Agroquímicos , Testes para Micronúcleos , Dano ao DNA
2.
Regul Toxicol Pharmacol ; 107: 104403, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31195068

RESUMO

In silico toxicology (IST) approaches to rapidly assess chemical hazard, and usage of such methods is increasing in all applications but especially for regulatory submissions, such as for assessing chemicals under REACH as well as the ICH M7 guideline for drug impurities. There are a number of obstacles to performing an IST assessment, including uncertainty in how such an assessment and associated expert review should be performed or what is fit for purpose, as well as a lack of confidence that the results will be accepted by colleagues, collaborators and regulatory authorities. To address this, a project to develop a series of IST protocols for different hazard endpoints has been initiated and this paper describes the genetic toxicity in silico (GIST) protocol. The protocol outlines a hazard assessment framework including key effects/mechanisms and their relationships to endpoints such as gene mutation and clastogenicity. IST models and data are reviewed that support the assessment of these effects/mechanisms along with defined approaches for combining the information and evaluating the confidence in the assessment. This protocol has been developed through a consortium of toxicologists, computational scientists, and regulatory scientists across several industries to support the implementation and acceptance of in silico approaches.


Assuntos
Modelos Teóricos , Mutagênicos/toxicidade , Projetos de Pesquisa , Toxicologia/métodos , Animais , Simulação por Computador , Humanos , Testes de Mutagenicidade , Medição de Risco
3.
Regul Toxicol Pharmacol ; 96: 1-17, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29678766

RESUMO

The present publication surveys several applications of in silico (i.e., computational) toxicology approaches across different industries and institutions. It highlights the need to develop standardized protocols when conducting toxicity-related predictions. This contribution articulates the information needed for protocols to support in silico predictions for major toxicological endpoints of concern (e.g., genetic toxicity, carcinogenicity, acute toxicity, reproductive toxicity, developmental toxicity) across several industries and regulatory bodies. Such novel in silico toxicology (IST) protocols, when fully developed and implemented, will ensure in silico toxicological assessments are performed and evaluated in a consistent, reproducible, and well-documented manner across industries and regulatory bodies to support wider uptake and acceptance of the approaches. The development of IST protocols is an initiative developed through a collaboration among an international consortium to reflect the state-of-the-art in in silico toxicology for hazard identification and characterization. A general outline for describing the development of such protocols is included and it is based on in silico predictions and/or available experimental data for a defined series of relevant toxicological effects or mechanisms. The publication presents a novel approach for determining the reliability of in silico predictions alongside experimental data. In addition, we discuss how to determine the level of confidence in the assessment based on the relevance and reliability of the information.


Assuntos
Simulação por Computador , Testes de Toxicidade/métodos , Toxicologia/métodos , Animais , Humanos
4.
Environ Mol Mutagen ; 58(5): 325-344, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28329407

RESUMO

Active ingredients in plant protection products are subject to rigorous safety assessment during their development, including assessment of genotoxicity. Plant protection products are used for agriculture in multiple regions and for the registration of active ingredients it is necessary to satisfy the data requirements of these different regions. There are no overarching global agreements on which genotoxicity studies need to be conducted to satisfy the majority of regulatory authorities. The implementation of new OECD guidelines for the in vitro micronucleus, transgenic rodent somatic and germ cell gene mutation and in vivo comet assays, as well as the revision of a number of other OECD test guidelines has resulted in some changes to data requirements. This review describes the genotoxicity data requirements for chemical active ingredients as well as biologicals, microbials, ground water metabolites, metabolites, and impurities in a number of regions. Similarities and differences are highlighted. Environ. Mol. Mutagen. 58:325-344, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Agroquímicos/toxicidade , Testes de Mutagenicidade/métodos , Animais , Ensaio Cometa , Humanos
5.
Regul Toxicol Pharmacol ; 83: 109-116, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27871869

RESUMO

This paper describes the further development of a read-across approach applicable to the toxicological assessment of structurally-related xenobiotic metabolites. The approach, which can be applied in the absence of definitive identification of all the individual metabolites, draws on the use of chemical descriptors and multi-variate statistical analysis to define a composite "chemical space" and to classify and characterize closely-related subgroups within this. In this example, consideration of the descriptors driving grouping, combined with empirical evidence for lack of significant further biotransformation of metabolites, leads to the conclusion that, in the absence of any specific structural alerts, the relative toxicity of metabolites within a single grouping will be determined by their relative systemic exposure as described by their ADME characteristics. The in vivo testing of a smaller number of exemplars, selected to have representative ADME properties for each grouping, is sufficient, therefore, to evaluate the toxicity of the remainder. The approach is exemplified using the metabolites of the herbicide S-metolachlor, detected in the leachate of a soil lysimeter.


Assuntos
Acetamidas/toxicidade , Monitoramento Ambiental/instrumentação , Poluentes do Solo/farmacocinética , Poluentes do Solo/toxicidade , Testes de Toxicidade/métodos , Toxicocinética , Xenobióticos/toxicidade , Acetamidas/química , Acetamidas/classificação , Acetamidas/farmacocinética , Animais , Biotransformação , Exposição Ambiental/efeitos adversos , Monitoramento Ambiental/métodos , Humanos , Modelos Químicos , Modelos Estatísticos , Estrutura Molecular , Análise Multivariada , Análise de Componente Principal , Medição de Risco , Poluentes do Solo/química , Poluentes do Solo/classificação , Relação Estrutura-Atividade , Xenobióticos/química , Xenobióticos/classificação , Xenobióticos/farmacocinética
6.
ALTEX ; 33(2): 149-66, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26863606

RESUMO

Grouping of substances and utilizing read-across of data within those groups represents an important data gap filling technique for chemical safety assessments. Categories/analogue groups are typically developed based on structural similarity and, increasingly often, also on mechanistic (biological) similarity. While read-across can play a key role in complying with legislations such as the European REACH regulation, the lack of consensus regarding the extent and type of evidence necessary to support it often hampers its successful application and acceptance by regulatory authorities. Despite a potentially broad user community, expertise is still concentrated across a handful of organizations and individuals. In order to facilitate the effective use of read-across, this document aims to summarize the state-of-the-art, summarizes insights learned from reviewing ECHA published decisions as far as the relative successes/pitfalls surrounding read-across under REACH and compile the relevant activities and guidance documents. Special emphasis is given to the available existing tools and approaches, an analysis of ECHA's published final decisions associated with all levels of compliance checks and testing proposals, the consideration and expression of uncertainty, the use of biological support data and the impact of the ECHA Read-Across Assessment Framework (RAAF) published in 2015.


Assuntos
Segurança Química/métodos , Substâncias Perigosas/toxicidade , Animais , Bases de Dados Factuais , Humanos , Medição de Risco/métodos , Gestão da Segurança/métodos , Toxicologia/métodos , Incerteza
7.
ALTEX ; 31(4): 387-96, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25368965

RESUMO

Read-across is a data gap filling technique used within category and analogue approaches. It has been utilized as an alternative approach to address information requirements under various past and present regulatory programs such as the OECD High Production Volume Programme as well as the EU's Registration, Evaluation, Authorisation and restriction of CHemicals (REACH) regulation. Although read-across raises a number of expectations, many misconceptions still remain around what it truly represents; how to address its associated justification in a robust and scientifically credible manner; what challenges/issues exist in terms of its application and acceptance; and what future efforts are needed to resolve them. In terms of future enhancements, read-across is likely to embrace more biologically-orientated approaches consistent with the Toxicity in the 21st Century vision (Tox-21c). This Food for Thought article, which is notably not a consensus report, aims to discuss a number of these aspects and, in doing so, to raise awareness of the ongoing efforts and activities to enhance read-across. It also intends to set the agenda for a CAAT read-across initiative in 2014-2015 to facilitate the proper use of this technique.


Assuntos
Simulação por Computador , Substâncias Perigosas/toxicidade , Toxicologia/métodos , Animais , Substâncias Perigosas/química , Modelos Biológicos , Relação Quantitativa Estrutura-Atividade , Toxicologia/legislação & jurisprudência
8.
Regul Toxicol Pharmacol ; 67(1): 1-12, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23764304

RESUMO

Read-across has generated much attention since it may be used as an alternative approach for addressing the information requirements under regulatory programmes, notably the EU's REACH regulation. Read-across approaches are conceptually accepted by ECHA and Member State Authorities (MS) but difficulties remain in applying them consistently in practice. Technical guidance is available and there are a plethora of models and tools that can assist in the development of categories and read-across, but guidance on how to practically apply categorisation approaches is still missing. This paper was prepared following an ECETOC (European Centre for Ecotoxicology and Toxicology) Task Force that had the objective of summarising guidance and tools available, reviewing their practical utility and considering what technical recommendations and learnings could be shared more widely to refine and inform on the current use of read-across. The full insights are recorded in ECETOC Technical Report TR No. 116. The focus of this present paper is to describe some of the technical and practical considerations when applying read-across under REACH. Since many of the deliberations helped identify the issues for discussion at a recent ECHA/Cefic LRI workshop on "read-across", summary outcomes from this workshop are captured where appropriate for completeness.


Assuntos
Ecotoxicologia/métodos , Substâncias Perigosas/química , Substâncias Perigosas/toxicidade , Relação Quantitativa Estrutura-Atividade , Toxicologia/métodos , Comitês Consultivos , Animais , Europa (Continente) , Humanos
9.
Environ Mol Mutagen ; 53(1): 1-9, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22329022

RESUMO

Propiconazole (PPZ) is a conazole fungicide that is not mutagenic, clastogenic, or DNA damaging in standard in vitro and in vivo genetic toxicity tests for gene mutations, chromosome aberrations, DNA damage, and cell transformation. However, it was demonstrated to be a male mouse liver carcinogen when administered in food for 24 months only at a concentration of 2,500 ppm that exceeded the maximum tolerated dose based on increased mortality, decreased body weight gain, and the presence of liver necrosis. PPZ was subsequently tested for mutagenicity in the Big Blue® transgenic mouse assay at the 2,500 ppm dose, and the result was reported as positive by Ross et al. ([2009]: Mutagenesis 24:149-152). Subsets of the mutants from the control and PPZ-exposed groups were sequenced to determine the mutation spectra and a multivariate clustering analysis method purportedly substantiated the increase in mutant frequency with PPZ (Ross and Leavitt. [2010]: Mutagenesis 25:231-234). However, as reported here, the results of the analysis of the mutation spectra using a conventional method indicated no treatment-related differences in the spectra. In this article, we re-examine the Big Blue® mouse findings with PPZ and conclude that the compound does not act as a mutagen in vivo.


Assuntos
Testes de Mutagenicidade/métodos , Mutagênicos/toxicidade , Mutação/efeitos dos fármacos , Triazóis/toxicidade , Animais , Fígado/efeitos dos fármacos , Masculino , Camundongos , Camundongos Transgênicos
10.
Regul Toxicol Pharmacol ; 49(3): 316-26, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17936460

RESUMO

Dichlorvos has been in widespread use as an insecticide for over 40 years, during which time its carcinogenicity and genotoxicity have been evaluated extensively. In vitro genotoxicity assays--have shown dichlorvos to be a direct acting genotoxicant at high concentrations, consistent with its known chemical reactivity. This activity is greatly reduced in the presence of S9-mix providing auxiliary metabolic activation, again consistent with its known chemistry and metabolism. Dichlorvos has been examined in a number of in vivo genotoxicity assays using a range of cell types and endpoints, and whilst there are some reports of activity, a critical evaluation has shown that there is no convincing evidence that dichlorvos has significant genotoxic activity in vivo under exposure conditions relevant to potential human exposures. In combination with the extensive carcinogenicity database for dichlorvos, the weight of evidence indicates that dichlorvos is not genotoxic under exposure conditions relevant to those that might occur in humans.


Assuntos
Diclorvós/metabolismo , Diclorvós/toxicidade , Animais , Testes de Carcinogenicidade/métodos , Testes de Carcinogenicidade/estatística & dados numéricos , Diclorvós/química , Humanos , Hidrólise , Inseticidas/química , Inseticidas/metabolismo , Inseticidas/toxicidade , Estrutura Molecular , Testes de Mutagenicidade/métodos , Testes de Mutagenicidade/estatística & dados numéricos
11.
Chem Biol Interact ; 148(1-2): 69-92, 2004 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-15223358

RESUMO

1,3-Butadiene (BD) is a major industrial chemical and a rodent carcinogen, with mice being much more susceptible than rats. Oxidative metabolism of BD, leading to the DNA-reactive epoxides 1,2-epoxy-3-butene (BMO), 1,2-epoxy-3,4-butanediol (EBD) and 1,2:3,4-diepoxybutane (DEB), is greater in mice than rats. In the present study the DNA adduct profiles in liver and lungs of rats and mice were determined following exposure to BMO and to BD since these profiles may provide qualitative and quantitative information on the DNA-reactive metabolites in target tissues. Adducts detected in vivo were identified by comparison with the products formed from the reaction of the individual epoxides with 2'-deoxyguanosine (dG). In rats and mice exposed to [4-14C]-BMO (1-50 mg/kg, i.p.), DNA adduct profiles were similar in liver and lung with N7-(2-hydroxy-3-butenyl)guanine (G1) and N7-(1-(hydroxymethyl)-2-propenyl)guanine (G2) as major adducts and N7-2,3,4-trihydroxybutylguanine (G4) as minor adduct. In rats and mice exposed to 200 ppm [2,3-14C]-BD by nose-only inhalation for 6 h, G4 was the major adduct in liver, lung and testes while G1 and G2 were only minor adducts. Another N7-trihydroxybutylguanine adduct (G3), which could not unambiguously be identified but is either another isomer of N7-2,3,4-trihydroxybutylguanine or, more likely, N7-(1-hydroxymethyl-2,3-dihydroxypropyl)guanine, was present at low concentrations in liver and lung DNA of mice, but absent in rats. The evidence indicates that the major DNA adduct formed in liver, lung and testes following in vivo exposure to BD is G4, which is formed from EBD, and not from DEB.


Assuntos
Butadienos/toxicidade , Carcinógenos/toxicidade , Adutos de DNA/efeitos dos fármacos , Compostos de Epóxi/toxicidade , Animais , Butadienos/administração & dosagem , Radioisótopos de Carbono , Carcinógenos/administração & dosagem , Cromatografia Líquida de Alta Pressão , Adutos de DNA/análise , Relação Dose-Resposta a Droga , Compostos de Epóxi/administração & dosagem , Guanina/análise , Injeções Intraperitoneais , Fígado/química , Fígado/efeitos dos fármacos , Pulmão/química , Pulmão/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos , Ratos , Ratos Sprague-Dawley
12.
Chem Biol Interact ; 147(2): 195-211, 2004 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-15013821

RESUMO

Male Sprague-Dawley rats and B6C3F1 mice were exposed to either a single 6h or a multiple (5) daily (6h) nose-only dose of 1,3-[2,3-(14)C]-butadiene at exposure concentrations of nominally 1, 5 or 20 ppm. The aim was to compare the results with those from a similar previous study at 200 ppm. DNA isolated from liver, lung and testis of exposed rats and mice was analysed for the presence of butadiene related adducts, especially the N7-guanine adducts. Total radioactivity present in the DNA from liver, lung and testis was quantified and indicated more covalent binding of radioactivity for mouse tissue DNA than rat tissue DNA. Following release of the depurinating DNA adducts by neutral thermal hydrolysis, the liberated depurinated DNA adducts were measured by reverse phase HPLC coupled with liquid scintillation counting. The guanine adduct G4, assigned as N7-(2,3,4-trihydroxybutyl)- guanine, was the major adduct measured in liver, lung and testis DNA in both rats and mice. Higher levels of G4 were detected in all mouse tissues compared with rat tissue. The dose-response relationship for the formation of adduct G4 was approximately linear for all tissues studied for both rats and mice exposed in the 1-20 ppm range. The formation of G4 in liver tissue was about three times more effective for mouse than rat in this exposure range. Average levels of adduct G4 measured in liver DNA of rats and mice exposed to 5 x 6 h 1, 5 and 20 ppm 1,3-[2,3-(14)C]-butadiene were, respectively, for rats: 0.79 +/- 0.30, 2.90 +/- 1.19, 16.35 +/- 4.8 adducts/10(8) nucleotides and for mice: 2.23 +/- 0.71, 12.24 +/- 2.15, 48.63 +/- 12.61 adducts/10(8) nucleotides. For lung DNA the corresponding values were for rats: 1.02 +/- 0.44, 3.12 +/- 1.06, 17.02 +/- 4.07 adducts/10(8) nucleotides, and for mice: 3.28 +/- 0.32, 14.04 +/- 1.55, 42.47 +/- 13.12 adducts/10(8) nucleotides. Limited comparative data showed that the levels of adduct G4 formed in liver and lung DNA of mice exposed to a single exposure to butadiene in the present 20 ppm study and earlier 200 ppm study were approximately directly proportional across dose, but this was not observed in the case of rats. From the available evidence it is most likely that adduct G4 was formed from a specific isomer of the diol-epoxide metabolite, 3,4-epoxy-1,2-butanediol rather than the diepoxide, 1,2,3,4-diepoxybutane. Another adduct G3, possibly a diastereomer of N7-(2,3,4-trihydroxybutyl)-guanine or most likely the regioisomer N7-(1-hydroxymethyl-2,3-dihydroxypropyl)-guanine, was also detected in DNA of mouse tissues but was essentially absent in DNA from rat tissue. Qualitatively similar profiles of adducts were observed following exposures to butadiene in the present 20 ppm study and the previous 200 ppm study. Overall the DNA adduct levels measured in tissues of both rats and mice were very low. The differences in the profiles and quantity of adducts seen between mice and rats were considered insufficient to explain the large difference in carcinogenic potency of butadiene to mice compared with rats.


Assuntos
Butadienos/toxicidade , Carcinógenos Ambientais/toxicidade , Adutos de DNA/metabolismo , Dano ao DNA , Administração por Inalação , Animais , Butadienos/administração & dosagem , Butadienos/metabolismo , Radioisótopos de Carbono , Carcinógenos Ambientais/administração & dosagem , Carcinógenos Ambientais/metabolismo , Cromatografia Líquida de Alta Pressão , Adutos de DNA/análise , Relação Dose-Resposta a Droga , Compostos de Epóxi/metabolismo , Guanina/química , Fígado/química , Fígado/efeitos dos fármacos , Pulmão/química , Pulmão/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos , Ratos , Ratos Sprague-Dawley , Contagem de Cintilação , Especificidade da Espécie , Testículo/química , Testículo/efeitos dos fármacos
13.
Chem Biol Interact ; 147(2): 213-32, 2004 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-15013822

RESUMO

Blood and urine were obtained from male Sprague-Dawley rats and B6C3F1 mice exposed to either a single 6 h or multiple daily (5 x 6 h) nose-only doses of 1,3-[2,3- (14)C]-butadiene at atmospheric concentrations of 1, 5 or 20 ppM. Globin was isolated from erythrocytes of exposed animals and analyzed for total radioactivity and also for N-(1,2,3-trihydroxybut-4-yl)-valine adducts. The modified Edman degradation procedure coupled with GC-MS was used for the adduct analysis. Linear relationships were observed between the exposures to 1,3-[2,3-(14)C]-butadiene and the total radioactivity measured in globin and the level of trihydroxybutyl valine adducts in globin. A greater level of radioactivity (ca. 1.3-fold) was found in rat globin compared with mouse globin. When analyzed for specific amino acid adducts, higher levels of trihydroxybutyl valine adducts were found in mouse globin compared with rat globin. Average levels of trihydroxybutyl valine adduct measured in globin from rats and mice exposed for 5 x 6 h at 1, 5 and 20 ppM 1,3-[2,3-(14)C]-butadiene were, respectively, for rats: 80, 179, 512 pM/g globin and for mice: 143, 351, 1100 pM/g globin. The profiles of urinary metabolites for rats and mice exposed at the different concentrations of butadiene were obtained by reverse phase HPLC analysis on urine collected 24 h after the start of exposure and were compared with results of a previous similar study carried out for 6 h at 200 ppM butadiene. Whilst there were qualitative and quantitative differences between the profiles for rats and mice, the major metabolites detected in both cases were those representing products of epoxide hydrolase mediated hydrolysis and glutathione (GSH) conjugation of the metabolically formed 1,2-epoxy-3-butene. These were 4-(N-acetyl-l-cysteine-S-yl)-1,2-dihydroxy butane and (R)-2-(N-acetyl-l-cystein-S-yl)-1-hydroxybut-3-ene, 1-(N-acetyl-l-cystein-S-yl)-2-(S)-hydroxybut-3-ene, 1-(N-acetyl-l-cystein-S-yl)-2-(R)-hydroxybut-3-ene, (S)-2-(N-acetyl-l-cystein-S-yl)-1-hydroxybut-3-ene, respectively. The former pathway showed a greater predominance in the rat. The profiles of metabolites were similar at exposure concentration in the range 1-20 ppM. There were however some subtle differences compared with results of exposure to the higher 200 ppM concentrations. Overall the results provide the basis for cross species comparison of low exposures in the range of occupational exposures, with the wealth of data available from high exposure studies.


Assuntos
Butadienos/toxicidade , Carcinógenos Ambientais/toxicidade , Eritrócitos/efeitos dos fármacos , Hemoglobinas/efeitos dos fármacos , Administração por Inalação , Animais , Butadienos/administração & dosagem , Butadienos/metabolismo , Radioisótopos de Carbono , Carcinógenos Ambientais/administração & dosagem , Carcinógenos Ambientais/metabolismo , Cromatografia Líquida de Alta Pressão , Relação Dose-Resposta a Droga , Eritrócitos/química , Eritrócitos/metabolismo , Hemoglobinas/análise , Hemoglobinas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos , Ratos , Ratos Sprague-Dawley , Contagem de Cintilação , Especificidade da Espécie , Valina/química , Valina/metabolismo
14.
Chem Biol Interact ; 145(2): 175-89, 2003 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-12686494

RESUMO

The uptake of 1,3-[2,3-(14)C]-butadiene and its disposition, measured as radioactivity in urine, faeces, exhaled volatiles and CO(2) during and following 6 h whole body exposure to 20 ppm butadiene has been investigated in male Sprague-Dawley rats and B6C3F1 mice. Whilst there were similarities between the two species, the uptake and metabolic distribution of butadiene were somewhat different for rats and mice. The major differences observed were in the urinary excretion of radioactivity and in the exhalation of 14C-CO(2). After 42 h from the start of exposure, 51.1% of radioactivity was eliminated in rat urine compared with 39.5% for mouse urine. 34.9% of the recovered radioactivity was exhaled by rats as 14C-CO(2), compared with 48.7% by mice. Excretion of radioactivity in faeces was similar for both species (3.8% for rats and 3.4% for mice). The tissue concentrations of 14C-butadiene equivalents measured in liver, testes, lung and blood of exposed mice were 0.493, 0460, 0.457, and 1.626 nmol/g tissue, respectively. The values for the corresponding rat tissues were 0.869, 0.329, 0.457, and 1.626 nmol butadiene equivalents/g tissue, respectively. For rats, 6.2% of recovered radioactivity (0.288 nmol butadiene equivalents/g tissue) was retained in carcasses whereas for mice the amount was 3.6% (0.334 nmol butadiene equivalents/g tissue). There were also some significant differences between the metabolic conversion of 1,3-[2,3-(14)C]-butadiene and excretion by mice following the 20 ppm whole body exposure compared to previously reported data for nose-only exposure to 200 ppm butadiene [Richardson et al., Toxicol. Sci. 49 (1999) 186]. The main difference between the high- and low-exposure studies was in the exhalation of 14C-CO(2). At the 200 ppm exposure, 40% of the radioactivity was exhaled as 14C-CO(2) by rats whereas 6% was measured by this route for mice. The proportional conversion of butadiene to CO(2) by mice was significantly greater at the low exposure concentration compared with that reported for the higher concentration. This shift was not observed for rats. The difference between species could be caused by a saturation of metabolism in mice between 20 and 200 ppm for the pathways leading to CO(2). Restraint or error in collection of CO(2) in the 200 ppm study could also be factors.


Assuntos
Butadienos/farmacocinética , Animais , Butadienos/administração & dosagem , Butadienos/sangue , Butadienos/urina , Dióxido de Carbono/metabolismo , Radioisótopos de Carbono , Fezes/química , Abrigo para Animais , Fígado/metabolismo , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos , Ratos , Ratos Sprague-Dawley , Especificidade da Espécie , Testículo/metabolismo , Fatores de Tempo , Distribuição Tecidual , Volatilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...